The Effectiveness of Snail Shell as Adsorbent For The Treatment of Waste Water From Beverage Industries Using H3 Po4 As Activating Agent
ثبت نشده
چکیده
The effectiveness of Snail Shell as adsorbent for the treatment of wastewater from beverage industries, using Phosphoric acid (H3PO4) as activating agent has been investigated. The snail shells were pyrolysed at 500C and partitioned into two parts; one part as sample A and the other further treated with the activating agent as sample B. The samples were characterized for some important properties such as porosity, surface area, organic content, moisture content, and pH; and sample B was used in all further experimental works. Wastewater from beverage industry was treated with the activated snail shell sample B, with a view to determining the extent of treatment with time. Some of the important wastewater parameters analyzed include: Biological oxygen Demand (BOD); Chemical Oxygen Demand (COD); Turbidity; Dissolved oxygen (DO); and Phosphate. The results obtained from the characterization of the snail shell adsorbent samples are: for sample A (Porosity, 48%; Surface area, 2567.32m; Organic content, 12.5%; Moisture content, 0.32%; pH, 8.76); and for sample B (Porosity 72%; Surface area, 2987.69m; Organic content, 7.3%; Moisture content, 0.27%; pH, 7.04). Also, the results of some of the physicochemical parameters of the waste water before and after treatment respectively, at a maximum time of 40mins are: 48mg/l and 16mg/l for BOD, 146mg/l and 37mg/l for COD, 41FAU and 1 FAU for turbidity, 1.8mg/l and 4.98mg/l for dissolved oxygen, 0.066mg/l and 0.0001mg/l for phosphate. In conclusion, this study has shown that activated carbon produced from snail shells can compete favorably with the conventional activated carbons in treating wastewater from beverage industry, using H3PO4 as an effective activating agent.
منابع مشابه
Investigation of arsenic removal parameters by a new nano-hybrid adsorbent produced from red mud and fly ash
Two common waste materials, red mud and fly ash, were used to produce a new nano-hybrid adsorbent by heat treatment with alkali addition. The new zeolitic structure formation of the hybrid adsorbent was revealed using the BET surface area, XRD, and SEM analyses. This hybrid adsorbent was utilized to remove arsenic from synthetic and real waste waters by batch and column adsorption experiments. ...
متن کاملWater Pollutants Adsorption through an Enhanced Activated Carbon Derived from Agriculture Waste
Background & Aims of the Study: A high nitrate and arsenic concentration in water resources represent a potential risk to the environment and public health. The present work improved a chemo-physically modified activated carbon derived from walnut shells as an adsorbent to improve nitrate and arsenic removal ability from water. Materials & ...
متن کاملVanadium Removal from Fuel Oil and Waste Water in Power Plant Using Humic Acid Coated Magnetic Nanoparticles
A method for treating fuel oil and waste water of power plant is suggested which is including vanadium elimination through contacting with humic acid coated magnetic nano-adsorbent. The nano-adsorbent was modified with humic acid (HA) as a compound having carboxyl, hydroxyl and amin functional groups. HA/Fe3O4 nanoparticles were prepared by a co-precipitation procedure and were character...
متن کاملRemoval of Cadmium from Aqueous Solutions by a Synthesized Activated Carbon
Introduction: There are different methods for removal of cadmium from aqueous solutions. Adsorption based methods are among the bests. One of the most important aspects for adsorption techniques is the availability of an accessible and economical adsorbent. This study aims to investigate cadmium removal from aqueous solutions by walnuts shell waste. Materials and Methods: Walnut Shell (WS) was...
متن کاملSub-critical water as a green solvent for production of valuable materials from agricultural waste biomass: A review of recent work
Agricultural waste biomass generated from agricultural production and food processing industry are abundant, such as durian peel, mango peel, corn straw, rice bran, corn shell, potato peel and many more. Due to low commercial value, these wastes are disposed in landfill, which if not managed properly may cause environmental problems. Currently, environmental laws and regulations pertaining to ...
متن کامل